Multi-Objective Workflow Scheduling With Deep-Q-Network-Based Multi-Agent Reinforcement Learning
نویسندگان
چکیده
منابع مشابه
Multi-Objective Deep Reinforcement Learning
We propose Deep Optimistic Linear Support Learning (DOL) to solve highdimensional multi-objective decision problems where the relative importances of the objectives are not known a priori. Using features from the high-dimensional inputs, DOL computes the convex coverage set containing all potential optimal solutions of the convex combinations of the objectives. To our knowledge, this is the fir...
متن کاملMulti-Agent Deep Reinforcement Learning
This work introduces a novel approach for solving reinforcement learning problems in multi-agent settings. We propose a state reformulation of multi-agent problems in R that allows the system state to be represented in an image-like fashion. We then apply deep reinforcement learning techniques with a convolution neural network as the Q-value function approximator to learn distributed multi-agen...
متن کاملA Multi-Objective Deep Reinforcement Learning Framework
This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on a deep sea treasure environment indicate that the proposed approach is able to converge to the optimal Pareto solutions. ...
متن کاملLenient Multi-Agent Deep Reinforcement Learning
Much of the success of single agent deep reinforcement learning (DRL) in recent years can be attributed to the use of experience replay memories (ERM), which allow Deep Q-Networks (DQNs) to be trained efficiently through sampling stored state transitions. However, care is required when using ERMs for multi-agent deep reinforcement learning (MA-DRL), as stored transitions can become outdated bec...
متن کاملLearning to Communicate with Deep Multi-Agent Reinforcement Learning
We consider the problem of multiple agents sensing and acting in environments with the goal of maximising their shared utility. In these environments, agents must learn communication protocols in order to share information that is needed to solve the tasks. By embracing deep neural networks, we are able to demonstrate endto-end learning of protocols in complex environments inspired by communica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2902846